Description: A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabresexd.x | |- ( ( ph /\ x R y ) -> x e. C ) |
|
| opabresexd.y | |- ( ( ph /\ x R y ) -> y : A --> B ) |
||
| opabresexd.a | |- ( ( ph /\ x e. C ) -> A e. U ) |
||
| opabresexd.b | |- ( ( ph /\ x e. C ) -> B e. V ) |
||
| opabresexd.c | |- ( ph -> C e. W ) |
||
| Assertion | opabbrfexd | |- ( ph -> { <. x , y >. | x R y } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresexd.x | |- ( ( ph /\ x R y ) -> x e. C ) |
|
| 2 | opabresexd.y | |- ( ( ph /\ x R y ) -> y : A --> B ) |
|
| 3 | opabresexd.a | |- ( ( ph /\ x e. C ) -> A e. U ) |
|
| 4 | opabresexd.b | |- ( ( ph /\ x e. C ) -> B e. V ) |
|
| 5 | opabresexd.c | |- ( ph -> C e. W ) |
|
| 6 | pm4.24 | |- ( x R y <-> ( x R y /\ x R y ) ) |
|
| 7 | 6 | opabbii | |- { <. x , y >. | x R y } = { <. x , y >. | ( x R y /\ x R y ) } |
| 8 | 1 2 3 4 5 | opabresexd | |- ( ph -> { <. x , y >. | ( x R y /\ x R y ) } e. _V ) |
| 9 | 7 8 | eqeltrid | |- ( ph -> { <. x , y >. | x R y } e. _V ) |