Metamath Proof Explorer


Theorem opabbrfexd

Description: A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresexd.x
|- ( ( ph /\ x R y ) -> x e. C )
opabresexd.y
|- ( ( ph /\ x R y ) -> y : A --> B )
opabresexd.a
|- ( ( ph /\ x e. C ) -> A e. U )
opabresexd.b
|- ( ( ph /\ x e. C ) -> B e. V )
opabresexd.c
|- ( ph -> C e. W )
Assertion opabbrfexd
|- ( ph -> { <. x , y >. | x R y } e. _V )

Proof

Step Hyp Ref Expression
1 opabresexd.x
 |-  ( ( ph /\ x R y ) -> x e. C )
2 opabresexd.y
 |-  ( ( ph /\ x R y ) -> y : A --> B )
3 opabresexd.a
 |-  ( ( ph /\ x e. C ) -> A e. U )
4 opabresexd.b
 |-  ( ( ph /\ x e. C ) -> B e. V )
5 opabresexd.c
 |-  ( ph -> C e. W )
6 pm4.24
 |-  ( x R y <-> ( x R y /\ x R y ) )
7 6 opabbii
 |-  { <. x , y >. | x R y } = { <. x , y >. | ( x R y /\ x R y ) }
8 1 2 3 4 5 opabresexd
 |-  ( ph -> { <. x , y >. | ( x R y /\ x R y ) } e. _V )
9 7 8 eqeltrid
 |-  ( ph -> { <. x , y >. | x R y } e. _V )