Metamath Proof Explorer


Theorem opabresex2d

Description: Obsolete version of opabresex2 as of 13-Dec-2024. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses opabresex2d.1 φxWGyψ
opabresex2d.2 φxy|ψV
Assertion opabresex2d φxy|xWGyθV

Proof

Step Hyp Ref Expression
1 opabresex2d.1 φxWGyψ
2 opabresex2d.2 φxy|ψV
3 1 ex φxWGyψ
4 3 alrimivv φxyxWGyψ
5 opabbrex xyxWGyψxy|ψVxy|xWGyθV
6 4 2 5 syl2anc φxy|xWGyθV