Metamath Proof Explorer


Theorem opelxpii

Description: Ordered pair membership in a Cartesian product (implication), induction form. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Hypotheses opelxpii.1 AC
opelxpii.2 BD
Assertion opelxpii ABC×D

Proof

Step Hyp Ref Expression
1 opelxpii.1 AC
2 opelxpii.2 BD
3 opelxpi ACBDABC×D
4 1 2 3 mp2an ABC×D