Metamath Proof Explorer


Theorem opeqpr

Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008) (Avoid depending on this detail.)

Ref Expression
Hypotheses opeqpr.1 AV
opeqpr.2 BV
opeqpr.3 CV
opeqpr.4 DV
Assertion opeqpr AB=CDC=AD=ABC=ABD=A

Proof

Step Hyp Ref Expression
1 opeqpr.1 AV
2 opeqpr.2 BV
3 opeqpr.3 CV
4 opeqpr.4 DV
5 eqcom AB=CDCD=AB
6 1 2 dfop AB=AAB
7 6 eqeq2i CD=ABCD=AAB
8 snex AV
9 prex ABV
10 3 4 8 9 preq12b CD=AABC=AD=ABC=ABD=A
11 5 7 10 3bitri AB=CDC=AD=ABC=ABD=A