Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | snopeqop.a | |
|
snopeqop.b | |
||
Assertion | snopeqop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snopeqop.a | |
|
2 | snopeqop.b | |
|
3 | eqcom | |
|
4 | opeqsng | |
|
5 | 4 | ancoms | |
6 | 3 5 | bitrid | |
7 | 1 2 | opeqsn | |
8 | 7 | a1i | |
9 | 8 | anbi2d | |
10 | 3anan12 | |
|
11 | 10 | bicomi | |
12 | 11 | a1i | |
13 | 6 9 12 | 3bitrd | |
14 | opprc2 | |
|
15 | 14 | eqeq2d | |
16 | opex | |
|
17 | 16 | snnz | |
18 | eqneqall | |
|
19 | 17 18 | mpi | |
20 | 15 19 | biimtrdi | |
21 | 20 | adantr | |
22 | eleq1 | |
|
23 | 22 | notbid | |
24 | 23 | eqcoms | |
25 | pm2.21 | |
|
26 | 24 25 | biimtrdi | |
27 | 26 | impd | |
28 | 27 | 3ad2ant2 | |
29 | 28 | com12 | |
30 | 21 29 | impbid | |
31 | 13 30 | pm2.61ian | |
32 | opprc1 | |
|
33 | 32 | eqeq2d | |
34 | 33 19 | biimtrdi | |
35 | eleq1 | |
|
36 | 35 | notbid | |
37 | snex | |
|
38 | 37 | pm2.24i | |
39 | 36 38 | biimtrdi | |
40 | 39 | 3ad2ant3 | |
41 | 40 | com12 | |
42 | 34 41 | impbid | |
43 | 31 42 | pm2.61i | |