Metamath Proof Explorer


Theorem snopeqop

Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses snopeqop.a AV
snopeqop.b BV
Assertion snopeqop AB=CDA=BC=DC=A

Proof

Step Hyp Ref Expression
1 snopeqop.a AV
2 snopeqop.b BV
3 eqcom AB=CDCD=AB
4 opeqsng CVDVCD=ABC=DAB=C
5 4 ancoms DVCVCD=ABC=DAB=C
6 3 5 bitrid DVCVAB=CDC=DAB=C
7 1 2 opeqsn AB=CA=BC=A
8 7 a1i DVCVAB=CA=BC=A
9 8 anbi2d DVCVC=DAB=CC=DA=BC=A
10 3anan12 A=BC=DC=AC=DA=BC=A
11 10 bicomi C=DA=BC=AA=BC=DC=A
12 11 a1i DVCVC=DA=BC=AA=BC=DC=A
13 6 9 12 3bitrd DVCVAB=CDA=BC=DC=A
14 opprc2 ¬DVCD=
15 14 eqeq2d ¬DVAB=CDAB=
16 opex ABV
17 16 snnz AB
18 eqneqall AB=ABA=BC=DC=A
19 17 18 mpi AB=A=BC=DC=A
20 15 19 biimtrdi ¬DVAB=CDA=BC=DC=A
21 20 adantr ¬DVCVAB=CDA=BC=DC=A
22 eleq1 D=CDVCV
23 22 notbid D=C¬DV¬CV
24 23 eqcoms C=D¬DV¬CV
25 pm2.21 ¬CVCVAB=CD
26 24 25 biimtrdi C=D¬DVCVAB=CD
27 26 impd C=D¬DVCVAB=CD
28 27 3ad2ant2 A=BC=DC=A¬DVCVAB=CD
29 28 com12 ¬DVCVA=BC=DC=AAB=CD
30 21 29 impbid ¬DVCVAB=CDA=BC=DC=A
31 13 30 pm2.61ian CVAB=CDA=BC=DC=A
32 opprc1 ¬CVCD=
33 32 eqeq2d ¬CVAB=CDAB=
34 33 19 biimtrdi ¬CVAB=CDA=BC=DC=A
35 eleq1 C=ACVAV
36 35 notbid C=A¬CV¬AV
37 snex AV
38 37 pm2.24i ¬AVAB=CD
39 36 38 biimtrdi C=A¬CVAB=CD
40 39 3ad2ant3 A=BC=DC=A¬CVAB=CD
41 40 com12 ¬CVA=BC=DC=AAB=CD
42 34 41 impbid ¬CVAB=CDA=BC=DC=A
43 31 42 pm2.61i AB=CDA=BC=DC=A