Metamath Proof Explorer


Theorem oplecon3

Description: Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opcon3.b B=BaseK
opcon3.l ˙=K
opcon3.o ˙=ocK
Assertion oplecon3 KOPXBYBX˙Y˙Y˙˙X

Proof

Step Hyp Ref Expression
1 opcon3.b B=BaseK
2 opcon3.l ˙=K
3 opcon3.o ˙=ocK
4 eqid joinK=joinK
5 eqid meetK=meetK
6 eqid 0.K=0.K
7 eqid 1.K=1.K
8 1 2 3 4 5 6 7 oposlem KOPXBYB˙XB˙˙X=XX˙Y˙Y˙˙XXjoinK˙X=1.KXmeetK˙X=0.K
9 8 simp1d KOPXBYB˙XB˙˙X=XX˙Y˙Y˙˙X
10 9 simp3d KOPXBYBX˙Y˙Y˙˙X