Metamath Proof Explorer


Theorem oplem1

Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)

Ref Expression
Hypotheses oplem1.1 φψχ
oplem1.2 φθτ
oplem1.3 ψθ
oplem1.4 χθτ
Assertion oplem1 φψ

Proof

Step Hyp Ref Expression
1 oplem1.1 φψχ
2 oplem1.2 φθτ
3 oplem1.3 ψθ
4 oplem1.4 χθτ
5 3 notbii ¬ψ¬θ
6 1 ord φ¬ψχ
7 5 6 biimtrrid φ¬θχ
8 2 ord φ¬θτ
9 7 8 jcad φ¬θχτ
10 4 biimpar χτθ
11 9 10 syl6 φ¬θθ
12 11 pm2.18d φθ
13 12 3 sylibr φψ