Metamath Proof Explorer
		
		
		
		Description:  A specialized lemma for set theory (ordered pair theorem).  (Contributed by NM, 18-Oct-1995)  (Proof shortened by Wolf Lammen, 8-Dec-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | oplem1.1 |  | 
					
						|  |  | oplem1.2 |  | 
					
						|  |  | oplem1.3 |  | 
					
						|  |  | oplem1.4 |  | 
				
					|  | Assertion | oplem1 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oplem1.1 |  | 
						
							| 2 |  | oplem1.2 |  | 
						
							| 3 |  | oplem1.3 |  | 
						
							| 4 |  | oplem1.4 |  | 
						
							| 5 | 3 | notbii |  | 
						
							| 6 | 1 | ord |  | 
						
							| 7 | 5 6 | biimtrrid |  | 
						
							| 8 | 2 | ord |  | 
						
							| 9 | 7 8 | jcad |  | 
						
							| 10 | 4 | biimpar |  | 
						
							| 11 | 9 10 | syl6 |  | 
						
							| 12 | 11 | pm2.18d |  | 
						
							| 13 | 12 3 | sylibr |  |