Description: A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995) (Proof shortened by Wolf Lammen, 8-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oplem1.1 | |
|
oplem1.2 | |
||
oplem1.3 | |
||
oplem1.4 | |
||
Assertion | oplem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oplem1.1 | |
|
2 | oplem1.2 | |
|
3 | oplem1.3 | |
|
4 | oplem1.4 | |
|
5 | 3 | notbii | |
6 | 1 | ord | |
7 | 5 6 | biimtrrid | |
8 | 2 | ord | |
9 | 7 8 | jcad | |
10 | 4 | biimpar | |
11 | 9 10 | syl6 | |
12 | 11 | pm2.18d | |
13 | 12 3 | sylibr | |