Metamath Proof Explorer


Theorem opnneirv

Description: A variant of opnneir with different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypotheses opnneir.1 φJTop
opnneirv.2 φx=yψχ
Assertion opnneirv φxJSxψyneiJSχ

Proof

Step Hyp Ref Expression
1 opnneir.1 φJTop
2 opnneirv.2 φx=yψχ
3 2 opnneilem φxJSxψyJSyχ
4 1 opnneir φyJSyχyneiJSχ
5 3 4 sylbid φxJSxψyneiJSχ