Metamath Proof Explorer


Theorem opnoncon

Description: Law of contradiction for orthoposets. ( chocin analog.) (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses opnoncon.b B=BaseK
opnoncon.o ˙=ocK
opnoncon.m ˙=meetK
opnoncon.z 0˙=0.K
Assertion opnoncon KOPXBX˙˙X=0˙

Proof

Step Hyp Ref Expression
1 opnoncon.b B=BaseK
2 opnoncon.o ˙=ocK
3 opnoncon.m ˙=meetK
4 opnoncon.z 0˙=0.K
5 eqid K=K
6 eqid joinK=joinK
7 eqid 1.K=1.K
8 1 5 2 6 3 4 7 oposlem KOPXBXB˙XB˙˙X=XXKX˙XK˙XXjoinK˙X=1.KX˙˙X=0˙
9 8 3anidm23 KOPXB˙XB˙˙X=XXKX˙XK˙XXjoinK˙X=1.KX˙˙X=0˙
10 9 simp3d KOPXBX˙˙X=0˙