Metamath Proof Explorer


Theorem riotaocN

Description: The orthocomplement of the unique poset element such that ps . ( riotaneg analog.) (Contributed by NM, 16-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses riotaoc.b B=BaseK
riotaoc.o ˙=ocK
riotaoc.a x=˙yφψ
Assertion riotaocN KOP∃!xBφιxB|φ=˙ιyB|ψ

Proof

Step Hyp Ref Expression
1 riotaoc.b B=BaseK
2 riotaoc.o ˙=ocK
3 riotaoc.a x=˙yφψ
4 nfcv _y˙
5 nfriota1 _yιyB|ψ
6 4 5 nffv _y˙ιyB|ψ
7 1 2 opoccl KOPyB˙yB
8 1 2 opoccl KOPιyB|ψB˙ιyB|ψB
9 fveq2 y=ιyB|ψ˙y=˙ιyB|ψ
10 1 2 opoccl KOPxB˙xB
11 1 2 opcon2b KOPxByBx=˙yy=˙x
12 10 11 reuhypd KOPxB∃!yBx=˙y
13 6 7 8 3 9 12 riotaxfrd KOP∃!xBφιxB|φ=˙ιyB|ψ