Metamath Proof Explorer


Theorem reuhypd

Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd . (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypotheses reuhypd.1 φxCBC
reuhypd.2 φxCyCx=Ay=B
Assertion reuhypd φxC∃!yCx=A

Proof

Step Hyp Ref Expression
1 reuhypd.1 φxCBC
2 reuhypd.2 φxCyCx=Ay=B
3 1 elexd φxCBV
4 eueq BV∃!yy=B
5 3 4 sylib φxC∃!yy=B
6 eleq1 y=ByCBC
7 1 6 syl5ibrcom φxCy=ByC
8 7 pm4.71rd φxCy=ByCy=B
9 2 3expa φxCyCx=Ay=B
10 9 pm5.32da φxCyCx=AyCy=B
11 8 10 bitr4d φxCy=ByCx=A
12 11 eubidv φxC∃!yy=B∃!yyCx=A
13 5 12 mpbid φxC∃!yyCx=A
14 df-reu ∃!yCx=A∃!yyCx=A
15 13 14 sylibr φxC∃!yCx=A