Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd . (Contributed by NM, 16-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuhypd.1 | |
|
reuhypd.2 | |
||
Assertion | reuhypd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuhypd.1 | |
|
2 | reuhypd.2 | |
|
3 | 1 | elexd | |
4 | eueq | |
|
5 | 3 4 | sylib | |
6 | eleq1 | |
|
7 | 1 6 | syl5ibrcom | |
8 | 7 | pm4.71rd | |
9 | 2 | 3expa | |
10 | 9 | pm5.32da | |
11 | 8 10 | bitr4d | |
12 | 11 | eubidv | |
13 | 5 12 | mpbid | |
14 | df-reu | |
|
15 | 13 14 | sylibr | |