| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuhypd.1 |  |-  ( ( ph /\ x e. C ) -> B e. C ) | 
						
							| 2 |  | reuhypd.2 |  |-  ( ( ph /\ x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) | 
						
							| 3 | 1 | elexd |  |-  ( ( ph /\ x e. C ) -> B e. _V ) | 
						
							| 4 |  | eueq |  |-  ( B e. _V <-> E! y y = B ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( ph /\ x e. C ) -> E! y y = B ) | 
						
							| 6 |  | eleq1 |  |-  ( y = B -> ( y e. C <-> B e. C ) ) | 
						
							| 7 | 1 6 | syl5ibrcom |  |-  ( ( ph /\ x e. C ) -> ( y = B -> y e. C ) ) | 
						
							| 8 | 7 | pm4.71rd |  |-  ( ( ph /\ x e. C ) -> ( y = B <-> ( y e. C /\ y = B ) ) ) | 
						
							| 9 | 2 | 3expa |  |-  ( ( ( ph /\ x e. C ) /\ y e. C ) -> ( x = A <-> y = B ) ) | 
						
							| 10 | 9 | pm5.32da |  |-  ( ( ph /\ x e. C ) -> ( ( y e. C /\ x = A ) <-> ( y e. C /\ y = B ) ) ) | 
						
							| 11 | 8 10 | bitr4d |  |-  ( ( ph /\ x e. C ) -> ( y = B <-> ( y e. C /\ x = A ) ) ) | 
						
							| 12 | 11 | eubidv |  |-  ( ( ph /\ x e. C ) -> ( E! y y = B <-> E! y ( y e. C /\ x = A ) ) ) | 
						
							| 13 | 5 12 | mpbid |  |-  ( ( ph /\ x e. C ) -> E! y ( y e. C /\ x = A ) ) | 
						
							| 14 |  | df-reu |  |-  ( E! y e. C x = A <-> E! y ( y e. C /\ x = A ) ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ( ph /\ x e. C ) -> E! y e. C x = A ) |