Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuhyp.1 | |- ( x e. C -> B e. C ) | |
| reuhyp.2 | |- ( ( x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) | ||
| Assertion | reuhyp | |- ( x e. C -> E! y e. C x = A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reuhyp.1 | |- ( x e. C -> B e. C ) | |
| 2 | reuhyp.2 | |- ( ( x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) | |
| 3 | tru | |- T. | |
| 4 | 1 | adantl | |- ( ( T. /\ x e. C ) -> B e. C ) | 
| 5 | 2 | 3adant1 | |- ( ( T. /\ x e. C /\ y e. C ) -> ( x = A <-> y = B ) ) | 
| 6 | 4 5 | reuhypd | |- ( ( T. /\ x e. C ) -> E! y e. C x = A ) | 
| 7 | 3 6 | mpan | |- ( x e. C -> E! y e. C x = A ) |