Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of TakeutiZaring p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.
This theorem should not be referenced by any proof other than axprALT . Instead, use zfpair2 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfpair | |- { x , y } e. _V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfpr2 |  |-  { x , y } = { w | ( w = x \/ w = y ) } | |
| 2 | 19.43 |  |-  ( E. z ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> ( E. z ( z = (/) /\ w = x ) \/ E. z ( z = { (/) } /\ w = y ) ) ) | |
| 3 | prlem2 |  |-  ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) ) | |
| 4 | 3 | exbii |  |-  ( E. z ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) ) | 
| 5 | 0ex | |- (/) e. _V | |
| 6 | 5 | isseti | |- E. z z = (/) | 
| 7 | 19.41v | |- ( E. z ( z = (/) /\ w = x ) <-> ( E. z z = (/) /\ w = x ) ) | |
| 8 | 6 7 | mpbiran | |- ( E. z ( z = (/) /\ w = x ) <-> w = x ) | 
| 9 | p0ex |  |-  { (/) } e. _V | |
| 10 | 9 | isseti |  |-  E. z z = { (/) } | 
| 11 | 19.41v |  |-  ( E. z ( z = { (/) } /\ w = y ) <-> ( E. z z = { (/) } /\ w = y ) ) | |
| 12 | 10 11 | mpbiran |  |-  ( E. z ( z = { (/) } /\ w = y ) <-> w = y ) | 
| 13 | 8 12 | orbi12i |  |-  ( ( E. z ( z = (/) /\ w = x ) \/ E. z ( z = { (/) } /\ w = y ) ) <-> ( w = x \/ w = y ) ) | 
| 14 | 2 4 13 | 3bitr3ri |  |-  ( ( w = x \/ w = y ) <-> E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) ) | 
| 15 | 14 | abbii |  |-  { w | ( w = x \/ w = y ) } = { w | E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) } | 
| 16 | dfpr2 |  |-  { (/) , { (/) } } = { z | ( z = (/) \/ z = { (/) } ) } | |
| 17 | pp0ex |  |-  { (/) , { (/) } } e. _V | |
| 18 | 16 17 | eqeltrri |  |-  { z | ( z = (/) \/ z = { (/) } ) } e. _V | 
| 19 | equequ2 | |- ( v = x -> ( w = v <-> w = x ) ) | |
| 20 | 0inp0 |  |-  ( z = (/) -> -. z = { (/) } ) | |
| 21 | 19 20 | prlem1 |  |-  ( v = x -> ( z = (/) -> ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) | 
| 22 | 21 | alrimdv |  |-  ( v = x -> ( z = (/) -> A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) | 
| 23 | 22 | spimevw |  |-  ( z = (/) -> E. v A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) | 
| 24 | orcom |  |-  ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> ( ( z = { (/) } /\ w = y ) \/ ( z = (/) /\ w = x ) ) ) | |
| 25 | equequ2 | |- ( v = y -> ( w = v <-> w = y ) ) | |
| 26 | 20 | con2i |  |-  ( z = { (/) } -> -. z = (/) ) | 
| 27 | 25 26 | prlem1 |  |-  ( v = y -> ( z = { (/) } -> ( ( ( z = { (/) } /\ w = y ) \/ ( z = (/) /\ w = x ) ) -> w = v ) ) ) | 
| 28 | 24 27 | syl7bi |  |-  ( v = y -> ( z = { (/) } -> ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) | 
| 29 | 28 | alrimdv |  |-  ( v = y -> ( z = { (/) } -> A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) | 
| 30 | 29 | spimevw |  |-  ( z = { (/) } -> E. v A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) | 
| 31 | 23 30 | jaoi |  |-  ( ( z = (/) \/ z = { (/) } ) -> E. v A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) | 
| 32 | 18 31 | zfrep4 |  |-  { w | E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) } e. _V | 
| 33 | 15 32 | eqeltri |  |-  { w | ( w = x \/ w = y ) } e. _V | 
| 34 | 1 33 | eqeltri |  |-  { x , y } e. _V |