Metamath Proof Explorer


Theorem oppcthinendc

Description: The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets ( oppcendc ) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcthinco.o O = oppCat C
oppcthinco.c φ C ThinCat
oppcthinendc.b B = Base C
oppcthinendc.h H = Hom C
oppcthinendc.1 φ x B y B x y x H y =
Assertion oppcthinendc φ comp 𝑓 C = comp 𝑓 O

Proof

Step Hyp Ref Expression
1 oppcthinco.o O = oppCat C
2 oppcthinco.c φ C ThinCat
3 oppcthinendc.b B = Base C
4 oppcthinendc.h H = Hom C
5 oppcthinendc.1 φ x B y B x y x H y =
6 1 3 4 5 oppcendc φ Hom 𝑓 C = Hom 𝑓 O
7 1 2 6 oppcthinco φ comp 𝑓 C = comp 𝑓 O