Metamath Proof Explorer


Theorem oppfrcllem

Description: Lemma for oppfrcl . (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses oppfrcl.1 φ G R
oppfrcl.2 Rel R
Assertion oppfrcllem φ G

Proof

Step Hyp Ref Expression
1 oppfrcl.1 φ G R
2 oppfrcl.2 Rel R
3 0nelrel0 Rel R ¬ R
4 2 3 ax-mp ¬ R
5 nelne2 G R ¬ R G
6 1 4 5 sylancl φ G