Metamath Proof Explorer


Theorem oppgval

Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015) (Revised by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses oppgval.2 +˙=+R
oppgval.3 O=opp𝑔R
Assertion oppgval O=RsSet+ndxtpos+˙

Proof

Step Hyp Ref Expression
1 oppgval.2 +˙=+R
2 oppgval.3 O=opp𝑔R
3 id x=Rx=R
4 fveq2 x=R+x=+R
5 4 1 eqtr4di x=R+x=+˙
6 5 tposeqd x=Rtpos+x=tpos+˙
7 6 opeq2d x=R+ndxtpos+x=+ndxtpos+˙
8 3 7 oveq12d x=RxsSet+ndxtpos+x=RsSet+ndxtpos+˙
9 df-oppg opp𝑔=xVxsSet+ndxtpos+x
10 ovex RsSet+ndxtpos+˙V
11 8 9 10 fvmpt RVopp𝑔R=RsSet+ndxtpos+˙
12 fvprc ¬RVopp𝑔R=
13 reldmsets ReldomsSet
14 13 ovprc1 ¬RVRsSet+ndxtpos+˙=
15 12 14 eqtr4d ¬RVopp𝑔R=RsSet+ndxtpos+˙
16 11 15 pm2.61i opp𝑔R=RsSet+ndxtpos+˙
17 2 16 eqtri O=RsSet+ndxtpos+˙