Metamath Proof Explorer


Theorem opposet

Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011)

Ref Expression
Assertion opposet KOPKPoset

Proof

Step Hyp Ref Expression
1 eqid BaseK=BaseK
2 eqid lubK=lubK
3 eqid glbK=glbK
4 eqid K=K
5 eqid ocK=ocK
6 eqid joinK=joinK
7 eqid meetK=meetK
8 eqid 0.K=0.K
9 eqid 1.K=1.K
10 1 2 3 4 5 6 7 8 9 isopos KOPKPosetBaseKdomlubKBaseKdomglbKxBaseKyBaseKocKxBaseKocKocKx=xxKyocKyKocKxxjoinKocKx=1.KxmeetKocKx=0.K
11 simpl1 KPosetBaseKdomlubKBaseKdomglbKxBaseKyBaseKocKxBaseKocKocKx=xxKyocKyKocKxxjoinKocKx=1.KxmeetKocKx=0.KKPoset
12 10 11 sylbi KOPKPoset