Description: There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opreuopreu.a | |
|
Assertion | opreuopreu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opreuopreu.a | |
|
2 | elxpi | |
|
3 | simprl | |
|
4 | vex | |
|
5 | vex | |
|
6 | 4 5 | op1st | |
7 | 6 | eqcomi | |
8 | 4 5 | op2nd | |
9 | 8 | eqcomi | |
10 | 7 9 | pm3.2i | |
11 | fveq2 | |
|
12 | 11 | eqeq2d | |
13 | fveq2 | |
|
14 | 13 | eqeq2d | |
15 | 12 14 | anbi12d | |
16 | 10 15 | mpbiri | |
17 | 16 1 | syl | |
18 | 17 | biimprd | |
19 | 18 | adantr | |
20 | 19 | impcom | |
21 | 3 20 | jca | |
22 | 21 | ex | |
23 | 22 | 2eximdv | |
24 | 2 23 | syl5com | |
25 | 17 | biimpa | |
26 | 25 | a1i | |
27 | 26 | exlimdvv | |
28 | 24 27 | impbid | |
29 | 28 | reubiia | |