Metamath Proof Explorer


Theorem opreuopreu

Description: There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023)

Ref Expression
Hypothesis opreuopreu.a a=1stpb=2ndpψφ
Assertion opreuopreu ∃!pA×Bφ∃!pA×Babp=abψ

Proof

Step Hyp Ref Expression
1 opreuopreu.a a=1stpb=2ndpψφ
2 elxpi pA×Babp=abaAbB
3 simprl φp=abaAbBp=ab
4 vex aV
5 vex bV
6 4 5 op1st 1stab=a
7 6 eqcomi a=1stab
8 4 5 op2nd 2ndab=b
9 8 eqcomi b=2ndab
10 7 9 pm3.2i a=1stabb=2ndab
11 fveq2 p=ab1stp=1stab
12 11 eqeq2d p=aba=1stpa=1stab
13 fveq2 p=ab2ndp=2ndab
14 13 eqeq2d p=abb=2ndpb=2ndab
15 12 14 anbi12d p=aba=1stpb=2ndpa=1stabb=2ndab
16 10 15 mpbiri p=aba=1stpb=2ndp
17 16 1 syl p=abψφ
18 17 biimprd p=abφψ
19 18 adantr p=abaAbBφψ
20 19 impcom φp=abaAbBψ
21 3 20 jca φp=abaAbBp=abψ
22 21 ex φp=abaAbBp=abψ
23 22 2eximdv φabp=abaAbBabp=abψ
24 2 23 syl5com pA×Bφabp=abψ
25 17 biimpa p=abψφ
26 25 a1i pA×Bp=abψφ
27 26 exlimdvv pA×Babp=abψφ
28 24 27 impbid pA×Bφabp=abψ
29 28 reubiia ∃!pA×Bφ∃!pA×Babp=abψ