Metamath Proof Explorer


Theorem opsrscaOLD

Description: Obsolete version of opsrsca as of 1-Nov-2024. The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses opsrbas.s S = I mPwSer R
opsrbas.o O = I ordPwSer R T
opsrbas.t φ T I × I
opsrsca.i φ I V
opsrsca.r φ R W
Assertion opsrscaOLD φ R = Scalar O

Proof

Step Hyp Ref Expression
1 opsrbas.s S = I mPwSer R
2 opsrbas.o O = I ordPwSer R T
3 opsrbas.t φ T I × I
4 opsrsca.i φ I V
5 opsrsca.r φ R W
6 1 4 5 psrsca φ R = Scalar S
7 df-sca Scalar = Slot 5
8 5nn 5
9 5lt10 5 < 10
10 1 2 3 7 8 9 opsrbaslemOLD φ Scalar S = Scalar O
11 6 10 eqtrd φ R = Scalar O