Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
opsrscaOLD
Metamath Proof Explorer
Description: Obsolete version of opsrsca as of 1-Nov-2024. The scalar ring of the
ordered power series structure. (Contributed by Mario Carneiro , 8-Feb-2015) (Revised by Mario Carneiro , 30-Aug-2015)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
opsrbas.s
⊢ S = I mPwSer R
opsrbas.o
⊢ O = I ordPwSer R ⁡ T
opsrbas.t
⊢ φ → T ⊆ I × I
opsrsca.i
⊢ φ → I ∈ V
opsrsca.r
⊢ φ → R ∈ W
Assertion
opsrscaOLD
⊢ φ → R = Scalar ⁡ O
Proof
Step
Hyp
Ref
Expression
1
opsrbas.s
⊢ S = I mPwSer R
2
opsrbas.o
⊢ O = I ordPwSer R ⁡ T
3
opsrbas.t
⊢ φ → T ⊆ I × I
4
opsrsca.i
⊢ φ → I ∈ V
5
opsrsca.r
⊢ φ → R ∈ W
6
1 4 5
psrsca
⊢ φ → R = Scalar ⁡ S
7
df-sca
⊢ Scalar = Slot 5
8
5nn
⊢ 5 ∈ ℕ
9
5lt10
⊢ 5 < 10
10
1 2 3 7 8 9
opsrbaslemOLD
⊢ φ → Scalar ⁡ S = Scalar ⁡ O
11
6 10
eqtrd
⊢ φ → R = Scalar ⁡ O