Metamath Proof Explorer


Theorem opsrscaOLD

Description: Obsolete version of opsrsca as of 1-Nov-2024. The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses opsrbas.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
opsrbas.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrbas.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
opsrsca.i ( 𝜑𝐼𝑉 )
opsrsca.r ( 𝜑𝑅𝑊 )
Assertion opsrscaOLD ( 𝜑𝑅 = ( Scalar ‘ 𝑂 ) )

Proof

Step Hyp Ref Expression
1 opsrbas.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 opsrbas.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
3 opsrbas.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
4 opsrsca.i ( 𝜑𝐼𝑉 )
5 opsrsca.r ( 𝜑𝑅𝑊 )
6 1 4 5 psrsca ( 𝜑𝑅 = ( Scalar ‘ 𝑆 ) )
7 df-sca Scalar = Slot 5
8 5nn 5 ∈ ℕ
9 5lt10 5 < 1 0
10 1 2 3 7 8 9 opsrbaslemOLD ( 𝜑 → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑂 ) )
11 6 10 eqtrd ( 𝜑𝑅 = ( Scalar ‘ 𝑂 ) )