Metamath Proof Explorer


Theorem ordeleqon

Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of TakeutiZaring p. 38 and its converse. (Contributed by NM, 1-Jun-2003)

Ref Expression
Assertion ordeleqon OrdAAOnA=On

Proof

Step Hyp Ref Expression
1 onprc ¬OnV
2 elex OnAOnV
3 1 2 mto ¬OnA
4 ordon OrdOn
5 ordtri3or OrdAOrdOnAOnA=OnOnA
6 4 5 mpan2 OrdAAOnA=OnOnA
7 df-3or AOnA=OnOnAAOnA=OnOnA
8 6 7 sylib OrdAAOnA=OnOnA
9 8 ord OrdA¬AOnA=OnOnA
10 3 9 mt3i OrdAAOnA=On
11 eloni AOnOrdA
12 ordeq A=OnOrdAOrdOn
13 4 12 mpbiri A=OnOrdA
14 11 13 jaoi AOnA=OnOrdA
15 10 14 impbii OrdAAOnA=On