Metamath Proof Explorer


Theorem ordelordALTVD

Description: An element of an ordinal class is ordinal. Proposition 7.6 of TakeutiZaring p. 36. This is an alternate proof of ordelord using the Axiom of Regularity indirectly through dford2 . dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that _E Fr A because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT is ordelordALTVD without virtual deductions and was automatically derived from ordelordALTVD using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE__WITH *" command.

1:: |- (. ( Ord A /\ B e. A ) ->. ( Ord A /\ B e. A ) ).
2:1: |- (. ( Ord A /\ B e. A ) ->. Ord A ).
3:1: |- (. ( Ord A /\ B e. A ) ->. B e. A ).
4:2: |- (. ( Ord A /\ B e. A ) ->. Tr A ).
5:2: |- (. ( Ord A /\ B e. A ) ->. A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) ).
6:4,3: |- (. ( Ord A /\ B e. A ) ->. B C_ A ).
7:6,6,5: |- (. ( Ord A /\ B e. A ) ->. A. x e. B A. y e. B ( x e. y \/ x = y \/ y e. x ) ).
8:: |- ( ( x e. y \/ x = y \/ y e. x ) <-> ( x e. y \/ y e. x \/ x = y ) )
9:8: |- A. y ( ( x e. y \/ x = y \/ y e. x ) <-> ( x e. y \/ y e. x \/ x = y ) )
10:9: |- A. y e. A ( ( x e. y \/ x = y \/ y e. x ) <-> ( x e. y \/ y e. x \/ x = y ) )
11:10: |- ( A. y e. A ( x e. y \/ x = y \/ y e. x ) <-> A. y e. A ( x e. y \/ y e. x \/ x = y ) )
12:11: |- A. x ( A. y e. A ( x e. y \/ x = y \/ y e. x ) <-> A. y e. A ( x e. y \/ y e. x \/ x = y ) )
13:12: |- A. x e. A ( A. y e. A ( x e. y \/ x = y \/ y e. x ) <-> A. y e. A ( x e. y \/ y e. x \/ x = y ) )
14:13: |- ( A. x e. A A. y e. A ( x e. y \/ x = y \/ y e. x ) <-> A. x e. A A. y e. A ( x e. y \/ y e. x \/ x = y ) )
15:14,5: |- (. ( Ord A /\ B e. A ) ->. A. x e. A A. y e. A ( x e. y \/ y e. x \/ x = y ) ).
16:4,15,3: |- (. ( Ord A /\ B e. A ) ->. Tr B ).
17:16,7: |- (. ( Ord A /\ B e. A ) ->. Ord B ).
qed:17: |- ( ( Ord A /\ B e. A ) -> Ord B )
(Contributed by Alan Sare, 12-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ordelordALTVD OrdABAOrdB

Proof

Step Hyp Ref Expression
1 idn1 OrdABAOrdABA
2 simpl OrdABAOrdA
3 1 2 e1a OrdABAOrdA
4 ordtr OrdATrA
5 3 4 e1a OrdABATrA
6 dford2 OrdATrAxAyAxyx=yyx
7 6 simprbi OrdAxAyAxyx=yyx
8 3 7 e1a OrdABAxAyAxyx=yyx
9 3orcomb xyx=yyxxyyxx=y
10 9 ax-gen yxyx=yyxxyyxx=y
11 alral yxyx=yyxxyyxx=yyAxyx=yyxxyyxx=y
12 10 11 e0a yAxyx=yyxxyyxx=y
13 ralbi yAxyx=yyxxyyxx=yyAxyx=yyxyAxyyxx=y
14 12 13 e0a yAxyx=yyxyAxyyxx=y
15 14 ax-gen xyAxyx=yyxyAxyyxx=y
16 alral xyAxyx=yyxyAxyyxx=yxAyAxyx=yyxyAxyyxx=y
17 15 16 e0a xAyAxyx=yyxyAxyyxx=y
18 ralbi xAyAxyx=yyxyAxyyxx=yxAyAxyx=yyxxAyAxyyxx=y
19 17 18 e0a xAyAxyx=yyxxAyAxyyxx=y
20 8 19 e1bi OrdABAxAyAxyyxx=y
21 simpr OrdABABA
22 1 21 e1a OrdABABA
23 tratrb TrAxAyAxyyxx=yBATrB
24 23 3exp TrAxAyAxyyxx=yBATrB
25 5 20 22 24 e111 OrdABATrB
26 trss TrABABA
27 5 22 26 e11 OrdABABA
28 ssralv2 BABAxAyAxyx=yyxxByBxyx=yyx
29 28 ex BABAxAyAxyx=yyxxByBxyx=yyx
30 27 27 8 29 e111 OrdABAxByBxyx=yyx
31 dford2 OrdBTrBxByBxyx=yyx
32 31 simplbi2 TrBxByBxyx=yyxOrdB
33 25 30 32 e11 OrdABAOrdB
34 33 in1 OrdABAOrdB