Metamath Proof Explorer


Theorem dford2

Description: Assuming ax-reg , an ordinal is a transitive class on which inclusion satisfies trichotomy. (Contributed by Scott Fenton, 27-Oct-2010)

Ref Expression
Assertion dford2 OrdATrAxAyAxyx=yyx

Proof

Step Hyp Ref Expression
1 df-ord OrdATrAEWeA
2 zfregfr EFrA
3 dfwe2 EWeAEFrAxAyAxEyx=yyEx
4 2 3 mpbiran EWeAxAyAxEyx=yyEx
5 epel xEyxy
6 biid x=yx=y
7 epel yExyx
8 5 6 7 3orbi123i xEyx=yyExxyx=yyx
9 8 2ralbii xAyAxEyx=yyExxAyAxyx=yyx
10 4 9 bitri EWeAxAyAxyx=yyx
11 10 anbi2i TrAEWeATrAxAyAxyx=yyx
12 1 11 bitri OrdATrAxAyAxyx=yyx