Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005) (Proof shortened by Andrew Salmon, 12-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordsssuc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong | |
|
2 | 1 | biimprd | |
3 | 2 | anim1d | |
4 | onsssuc | |
|
5 | 3 4 | syl6 | |
6 | annim | |
|
7 | ssexg | |
|
8 | 7 | ex | |
9 | elex | |
|
10 | 9 | a1d | |
11 | 8 10 | pm5.21ni | |
12 | 6 11 | sylbi | |
13 | 12 | expcom | |
14 | 13 | adantld | |
15 | 5 14 | pm2.61i | |