Metamath Proof Explorer


Theorem ordsssuc2

Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsssuc2 OrdABOnABAsucB

Proof

Step Hyp Ref Expression
1 elong AVAOnOrdA
2 1 biimprd AVOrdAAOn
3 2 anim1d AVOrdABOnAOnBOn
4 onsssuc AOnBOnABAsucB
5 3 4 syl6 AVOrdABOnABAsucB
6 annim BOn¬AV¬BOnAV
7 ssexg ABBOnAV
8 7 ex ABBOnAV
9 elex AsucBAV
10 9 a1d AsucBBOnAV
11 8 10 pm5.21ni ¬BOnAVABAsucB
12 6 11 sylbi BOn¬AVABAsucB
13 12 expcom ¬AVBOnABAsucB
14 13 adantld ¬AVOrdABOnABAsucB
15 5 14 pm2.61i OrdABOnABAsucB