Metamath Proof Explorer
Description: An inference for disjunction elimination. (Contributed by Giovanni
Mascellani, 24-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
orel.1 |
|
|
|
orel.2 |
|
|
|
orel.3 |
|
|
Assertion |
orel |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
orel.1 |
|
2 |
|
orel.2 |
|
3 |
|
orel.3 |
|
4 |
|
simprl |
|
5 |
1
|
ancoms |
|
6 |
4 5
|
sylan |
|
7 |
|
simprr |
|
8 |
2
|
ancoms |
|
9 |
7 8
|
sylan |
|
10 |
3
|
adantr |
|
11 |
6 9 10
|
mpjaodan |
|