Metamath Proof Explorer
Description: An inference for disjunction elimination. (Contributed by Giovanni
Mascellani, 24-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
orel.1 |
|
|
|
orel.2 |
|
|
|
orel.3 |
|
|
Assertion |
orel |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orel.1 |
|
| 2 |
|
orel.2 |
|
| 3 |
|
orel.3 |
|
| 4 |
|
simprl |
|
| 5 |
1
|
ancoms |
|
| 6 |
4 5
|
sylan |
|
| 7 |
|
simprr |
|
| 8 |
2
|
ancoms |
|
| 9 |
7 8
|
sylan |
|
| 10 |
3
|
adantr |
|
| 11 |
6 9 10
|
mpjaodan |
|