Metamath Proof Explorer


Theorem orthcom

Description: Orthogonality commutes. (Contributed by NM, 10-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion orthcom ABAihB=0BihA=0

Proof

Step Hyp Ref Expression
1 fveq2 AihB=0AihB=0
2 cj0 0=0
3 1 2 eqtrdi AihB=0AihB=0
4 ax-his1 BABihA=AihB
5 4 ancoms ABBihA=AihB
6 5 eqeq1d ABBihA=0AihB=0
7 3 6 imbitrrid ABAihB=0BihA=0
8 fveq2 BihA=0BihA=0
9 8 2 eqtrdi BihA=0BihA=0
10 ax-his1 ABAihB=BihA
11 10 eqeq1d ABAihB=0BihA=0
12 9 11 imbitrrid ABBihA=0AihB=0
13 7 12 impbid ABAihB=0BihA=0