Metamath Proof Explorer


Theorem oteq2

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq2 A=BCAD=CBD

Proof

Step Hyp Ref Expression
1 opeq2 A=BCA=CB
2 1 opeq1d A=BCAD=CBD
3 df-ot CAD=CAD
4 df-ot CBD=CBD
5 2 3 4 3eqtr4g A=BCAD=CBD