Metamath Proof Explorer


Theorem oteqimp

Description: The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018)

Ref Expression
Assertion oteqimp T=ABCAXBYCZ1st1stT=A2nd1stT=B2ndT=C

Proof

Step Hyp Ref Expression
1 ot1stg AXBYCZ1st1stABC=A
2 ot2ndg AXBYCZ2nd1stABC=B
3 ot3rdg CZ2ndABC=C
4 3 3ad2ant3 AXBYCZ2ndABC=C
5 1 2 4 3jca AXBYCZ1st1stABC=A2nd1stABC=B2ndABC=C
6 2fveq3 T=ABC1st1stT=1st1stABC
7 6 eqeq1d T=ABC1st1stT=A1st1stABC=A
8 2fveq3 T=ABC2nd1stT=2nd1stABC
9 8 eqeq1d T=ABC2nd1stT=B2nd1stABC=B
10 fveqeq2 T=ABC2ndT=C2ndABC=C
11 7 9 10 3anbi123d T=ABC1st1stT=A2nd1stT=B2ndT=C1st1stABC=A2nd1stABC=B2ndABC=C
12 5 11 imbitrrid T=ABCAXBYCZ1st1stT=A2nd1stT=B2ndT=C