Metamath Proof Explorer


Theorem otpsstr

Description: Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K=BasendxBTopSetndxJndx˙
Assertion otpsstr KStruct110

Proof

Step Hyp Ref Expression
1 otpsstr.w K=BasendxBTopSetndxJndx˙
2 1nn 1
3 basendx Basendx=1
4 1lt9 1<9
5 9nn 9
6 tsetndx TopSetndx=9
7 9lt10 9<10
8 10nn 10
9 plendx ndx=10
10 2 3 4 5 6 7 8 9 strle3 BasendxBTopSetndxJndx˙Struct110
11 1 10 eqbrtri KStruct110