Metamath Proof Explorer


Theorem ottpos

Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Assertion ottpos CVABCtposFBACF

Proof

Step Hyp Ref Expression
1 brtpos CVABtposFCBAFC
2 df-br ABtposFCABCtposF
3 df-br BAFCBACF
4 1 2 3 3bitr3g CVABCtposFBACF
5 df-ot ABC=ABC
6 5 eleq1i ABCtposFABCtposF
7 df-ot BAC=BAC
8 7 eleq1i BACFBACF
9 4 6 8 3bitr4g CVABCtposFBACF