Metamath Proof Explorer


Theorem ottpos

Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Assertion ottpos ( 𝐶𝑉 → ( ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ ∈ tpos 𝐹 ↔ ⟨ 𝐵 , 𝐴 , 𝐶 ⟩ ∈ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 brtpos ( 𝐶𝑉 → ( ⟨ 𝐴 , 𝐵 ⟩ tpos 𝐹 𝐶 ↔ ⟨ 𝐵 , 𝐴𝐹 𝐶 ) )
2 df-br ( ⟨ 𝐴 , 𝐵 ⟩ tpos 𝐹 𝐶 ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ tpos 𝐹 )
3 df-br ( ⟨ 𝐵 , 𝐴𝐹 𝐶 ↔ ⟨ ⟨ 𝐵 , 𝐴 ⟩ , 𝐶 ⟩ ∈ 𝐹 )
4 1 2 3 3bitr3g ( 𝐶𝑉 → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ tpos 𝐹 ↔ ⟨ ⟨ 𝐵 , 𝐴 ⟩ , 𝐶 ⟩ ∈ 𝐹 ) )
5 df-ot 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶
6 5 eleq1i ( ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ ∈ tpos 𝐹 ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ tpos 𝐹 )
7 df-ot 𝐵 , 𝐴 , 𝐶 ⟩ = ⟨ ⟨ 𝐵 , 𝐴 ⟩ , 𝐶
8 7 eleq1i ( ⟨ 𝐵 , 𝐴 , 𝐶 ⟩ ∈ 𝐹 ↔ ⟨ ⟨ 𝐵 , 𝐴 ⟩ , 𝐶 ⟩ ∈ 𝐹 )
9 4 6 8 3bitr4g ( 𝐶𝑉 → ( ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ ∈ tpos 𝐹 ↔ ⟨ 𝐵 , 𝐴 , 𝐶 ⟩ ∈ 𝐹 ) )