Metamath Proof Explorer


Theorem ovidi

Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovidi.2 xRyS*zφ
ovidi.3 F=xyz|xRySφ
Assertion ovidi xRySφxFy=z

Proof

Step Hyp Ref Expression
1 ovidi.2 xRyS*zφ
2 ovidi.3 F=xyz|xRySφ
3 moanimv *zxRySφxRyS*zφ
4 1 3 mpbir *zxRySφ
5 4 2 ovidig xRySφxFy=z
6 5 ex xRySφxFy=z