Metamath Proof Explorer


Theorem ovmpodv

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodf.1 φAC
ovmpodf.2 φx=ABD
ovmpodf.3 φx=Ay=BRV
ovmpodf.4 φx=Ay=BAFB=Rψ
Assertion ovmpodv φF=xC,yDRψ

Proof

Step Hyp Ref Expression
1 ovmpodf.1 φAC
2 ovmpodf.2 φx=ABD
3 ovmpodf.3 φx=Ay=BRV
4 ovmpodf.4 φx=Ay=BAFB=Rψ
5 nfcv _xF
6 nfv xψ
7 nfcv _yF
8 nfv yψ
9 1 2 3 4 5 6 7 8 ovmpodf φF=xC,yDRψ