Metamath Proof Explorer


Theorem ovmpog

Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses ovmpog.1 x=AR=G
ovmpog.2 y=BG=S
ovmpog.3 F=xC,yDR
Assertion ovmpog ACBDSHAFB=S

Proof

Step Hyp Ref Expression
1 ovmpog.1 x=AR=G
2 ovmpog.2 y=BG=S
3 ovmpog.3 F=xC,yDR
4 1 2 sylan9eq x=Ay=BR=S
5 4 3 ovmpoga ACBDSHAFB=S