Metamath Proof Explorer


Theorem ovmpogad

Description: Value of an operation given by a maps-to rule. Deduction form of ovmpoga . (Contributed by SN, 14-Mar-2025)

Ref Expression
Hypotheses ovmpogad.f F=xC,yDR
ovmpogad.s x=Ay=BR=S
ovmpogad.1 φAC
ovmpogad.2 φBD
ovmpogad.v φSV
Assertion ovmpogad φAFB=S

Proof

Step Hyp Ref Expression
1 ovmpogad.f F=xC,yDR
2 ovmpogad.s x=Ay=BR=S
3 ovmpogad.1 φAC
4 ovmpogad.2 φBD
5 ovmpogad.v φSV
6 1 a1i φF=xC,yDR
7 2 adantl φx=Ay=BR=S
8 6 7 3 4 5 ovmpod φAFB=S