| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofun.a |
|
| 2 |
|
ofun.b |
|
| 3 |
|
ofun.c |
|
| 4 |
|
ofun.d |
|
| 5 |
|
ofun.m |
|
| 6 |
|
ofun.n |
|
| 7 |
|
ofun.1 |
|
| 8 |
1 3 7
|
fnund |
|
| 9 |
2 4 7
|
fnund |
|
| 10 |
5 6
|
unexd |
|
| 11 |
|
inidm |
|
| 12 |
8 9 10 10 11
|
offn |
|
| 13 |
|
inidm |
|
| 14 |
1 2 5 5 13
|
offn |
|
| 15 |
|
inidm |
|
| 16 |
3 4 6 6 15
|
offn |
|
| 17 |
14 16 7
|
fnund |
|
| 18 |
|
eqidd |
|
| 19 |
|
eqidd |
|
| 20 |
8 9 10 10 11 18 19
|
ofval |
|
| 21 |
|
elun |
|
| 22 |
|
eqidd |
|
| 23 |
|
eqidd |
|
| 24 |
1 2 5 5 13 22 23
|
ofval |
|
| 25 |
14
|
adantr |
|
| 26 |
16
|
adantr |
|
| 27 |
7
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
25 26 27 28
|
fvun1d |
|
| 30 |
1
|
adantr |
|
| 31 |
3
|
adantr |
|
| 32 |
30 31 27 28
|
fvun1d |
|
| 33 |
2
|
adantr |
|
| 34 |
4
|
adantr |
|
| 35 |
33 34 27 28
|
fvun1d |
|
| 36 |
32 35
|
oveq12d |
|
| 37 |
24 29 36
|
3eqtr4rd |
|
| 38 |
|
eqidd |
|
| 39 |
|
eqidd |
|
| 40 |
3 4 6 6 15 38 39
|
ofval |
|
| 41 |
14
|
adantr |
|
| 42 |
16
|
adantr |
|
| 43 |
7
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
41 42 43 44
|
fvun2d |
|
| 46 |
1
|
adantr |
|
| 47 |
3
|
adantr |
|
| 48 |
46 47 43 44
|
fvun2d |
|
| 49 |
2
|
adantr |
|
| 50 |
4
|
adantr |
|
| 51 |
49 50 43 44
|
fvun2d |
|
| 52 |
48 51
|
oveq12d |
|
| 53 |
40 45 52
|
3eqtr4rd |
|
| 54 |
37 53
|
jaodan |
|
| 55 |
21 54
|
sylan2b |
|
| 56 |
20 55
|
eqtrd |
|
| 57 |
12 17 56
|
eqfnfvd |
|