| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofun.a |
⊢ ( 𝜑 → 𝐴 Fn 𝑀 ) |
| 2 |
|
ofun.b |
⊢ ( 𝜑 → 𝐵 Fn 𝑀 ) |
| 3 |
|
ofun.c |
⊢ ( 𝜑 → 𝐶 Fn 𝑁 ) |
| 4 |
|
ofun.d |
⊢ ( 𝜑 → 𝐷 Fn 𝑁 ) |
| 5 |
|
ofun.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
| 6 |
|
ofun.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑊 ) |
| 7 |
|
ofun.1 |
⊢ ( 𝜑 → ( 𝑀 ∩ 𝑁 ) = ∅ ) |
| 8 |
1 3 7
|
fnund |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) Fn ( 𝑀 ∪ 𝑁 ) ) |
| 9 |
2 4 7
|
fnund |
⊢ ( 𝜑 → ( 𝐵 ∪ 𝐷 ) Fn ( 𝑀 ∪ 𝑁 ) ) |
| 10 |
5 6
|
unexd |
⊢ ( 𝜑 → ( 𝑀 ∪ 𝑁 ) ∈ V ) |
| 11 |
|
inidm |
⊢ ( ( 𝑀 ∪ 𝑁 ) ∩ ( 𝑀 ∪ 𝑁 ) ) = ( 𝑀 ∪ 𝑁 ) |
| 12 |
8 9 10 10 11
|
offn |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐶 ) ∘f 𝑅 ( 𝐵 ∪ 𝐷 ) ) Fn ( 𝑀 ∪ 𝑁 ) ) |
| 13 |
|
inidm |
⊢ ( 𝑀 ∩ 𝑀 ) = 𝑀 |
| 14 |
1 2 5 5 13
|
offn |
⊢ ( 𝜑 → ( 𝐴 ∘f 𝑅 𝐵 ) Fn 𝑀 ) |
| 15 |
|
inidm |
⊢ ( 𝑁 ∩ 𝑁 ) = 𝑁 |
| 16 |
3 4 6 6 15
|
offn |
⊢ ( 𝜑 → ( 𝐶 ∘f 𝑅 𝐷 ) Fn 𝑁 ) |
| 17 |
14 16 7
|
fnund |
⊢ ( 𝜑 → ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) Fn ( 𝑀 ∪ 𝑁 ) ) |
| 18 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ∪ 𝑁 ) ) → ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) = ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) ) |
| 19 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ∪ 𝑁 ) ) → ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) = ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) |
| 20 |
8 9 10 10 11 18 19
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ∪ 𝑁 ) ) → ( ( ( 𝐴 ∪ 𝐶 ) ∘f 𝑅 ( 𝐵 ∪ 𝐷 ) ) ‘ 𝑥 ) = ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) ) |
| 21 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝑀 ∪ 𝑁 ) ↔ ( 𝑥 ∈ 𝑀 ∨ 𝑥 ∈ 𝑁 ) ) |
| 22 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 23 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 24 |
1 2 5 5 13 22 23
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( 𝐴 ∘f 𝑅 𝐵 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 𝑥 ) 𝑅 ( 𝐵 ‘ 𝑥 ) ) ) |
| 25 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝐴 ∘f 𝑅 𝐵 ) Fn 𝑀 ) |
| 26 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝐶 ∘f 𝑅 𝐷 ) Fn 𝑁 ) |
| 27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( 𝑀 ∩ 𝑁 ) = ∅ ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝑥 ∈ 𝑀 ) |
| 29 |
25 26 27 28
|
fvun1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) = ( ( 𝐴 ∘f 𝑅 𝐵 ) ‘ 𝑥 ) ) |
| 30 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐴 Fn 𝑀 ) |
| 31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐶 Fn 𝑁 ) |
| 32 |
30 31 27 28
|
fvun1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 33 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐵 Fn 𝑀 ) |
| 34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → 𝐷 Fn 𝑁 ) |
| 35 |
33 34 27 28
|
fvun1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 36 |
32 35
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) = ( ( 𝐴 ‘ 𝑥 ) 𝑅 ( 𝐵 ‘ 𝑥 ) ) ) |
| 37 |
24 29 36
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑀 ) → ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) = ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) ) |
| 38 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( 𝐶 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑥 ) ) |
| 39 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 40 |
3 4 6 6 15 38 39
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( ( 𝐶 ∘f 𝑅 𝐷 ) ‘ 𝑥 ) = ( ( 𝐶 ‘ 𝑥 ) 𝑅 ( 𝐷 ‘ 𝑥 ) ) ) |
| 41 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( 𝐴 ∘f 𝑅 𝐵 ) Fn 𝑀 ) |
| 42 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( 𝐶 ∘f 𝑅 𝐷 ) Fn 𝑁 ) |
| 43 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( 𝑀 ∩ 𝑁 ) = ∅ ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑥 ∈ 𝑁 ) |
| 45 |
41 42 43 44
|
fvun2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) = ( ( 𝐶 ∘f 𝑅 𝐷 ) ‘ 𝑥 ) ) |
| 46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝐴 Fn 𝑀 ) |
| 47 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝐶 Fn 𝑁 ) |
| 48 |
46 47 43 44
|
fvun2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) = ( 𝐶 ‘ 𝑥 ) ) |
| 49 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝐵 Fn 𝑀 ) |
| 50 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝐷 Fn 𝑁 ) |
| 51 |
49 50 43 44
|
fvun2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
| 52 |
48 51
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) = ( ( 𝐶 ‘ 𝑥 ) 𝑅 ( 𝐷 ‘ 𝑥 ) ) ) |
| 53 |
40 45 52
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) = ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) ) |
| 54 |
37 53
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑀 ∨ 𝑥 ∈ 𝑁 ) ) → ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) = ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) ) |
| 55 |
21 54
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ∪ 𝑁 ) ) → ( ( ( 𝐴 ∪ 𝐶 ) ‘ 𝑥 ) 𝑅 ( ( 𝐵 ∪ 𝐷 ) ‘ 𝑥 ) ) = ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) ) |
| 56 |
20 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ∪ 𝑁 ) ) → ( ( ( 𝐴 ∪ 𝐶 ) ∘f 𝑅 ( 𝐵 ∪ 𝐷 ) ) ‘ 𝑥 ) = ( ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ‘ 𝑥 ) ) |
| 57 |
12 17 56
|
eqfnfvd |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐶 ) ∘f 𝑅 ( 𝐵 ∪ 𝐷 ) ) = ( ( 𝐴 ∘f 𝑅 𝐵 ) ∪ ( 𝐶 ∘f 𝑅 𝐷 ) ) ) |