Metamath Proof Explorer


Theorem ovprc1

Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004)

Ref Expression
Hypothesis ovprc1.1 Rel dom F
Assertion ovprc1 ¬ A V A F B =

Proof

Step Hyp Ref Expression
1 ovprc1.1 Rel dom F
2 simpl A V B V A V
3 1 ovprc ¬ A V B V A F B =
4 2 3 nsyl5 ¬ A V A F B =