Metamath Proof Explorer


Theorem p1evtxdp1

Description: If an edge E (not being a loop) which contains vertex U is added to a graph G (yielding a graph F ), the degree of U is increased by 1. (Contributed by AV, 3-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v V=VtxG
p1evtxdeq.i I=iEdgG
p1evtxdeq.f φFunI
p1evtxdeq.fv φVtxF=V
p1evtxdeq.fi φiEdgF=IKE
p1evtxdeq.k φKX
p1evtxdeq.d φKdomI
p1evtxdeq.u φUV
p1evtxdp1.e φE𝒫V
p1evtxdp1.n φUE
p1evtxdp1.l φ2E
Assertion p1evtxdp1 φVtxDegFU=VtxDegGU+𝑒1

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v V=VtxG
2 p1evtxdeq.i I=iEdgG
3 p1evtxdeq.f φFunI
4 p1evtxdeq.fv φVtxF=V
5 p1evtxdeq.fi φiEdgF=IKE
6 p1evtxdeq.k φKX
7 p1evtxdeq.d φKdomI
8 p1evtxdeq.u φUV
9 p1evtxdp1.e φE𝒫V
10 p1evtxdp1.n φUE
11 p1evtxdp1.l φ2E
12 1 2 3 4 5 6 7 8 9 p1evtxdeqlem φVtxDegFU=VtxDegGU+𝑒VtxDegVKEU
13 1 fvexi VV
14 snex KEV
15 13 14 pm3.2i VVKEV
16 opiedgfv VVKEViEdgVKE=KE
17 15 16 mp1i φiEdgVKE=KE
18 opvtxfv VVKEVVtxVKE=V
19 15 18 mp1i φVtxVKE=V
20 17 19 6 8 9 10 11 1hevtxdg1 φVtxDegVKEU=1
21 20 oveq2d φVtxDegGU+𝑒VtxDegVKEU=VtxDegGU+𝑒1
22 12 21 eqtrd φVtxDegFU=VtxDegGU+𝑒1