Metamath Proof Explorer


Theorem 1hevtxdg1

Description: The vertex degree of vertex D in a graph G with only one hyperedge E (not being a loop) is 1 if D is incident with the edge E . (Contributed by AV, 2-Mar-2021) (Proof shortened by AV, 17-Apr-2021)

Ref Expression
Hypotheses 1hevtxdg0.i φiEdgG=AE
1hevtxdg0.v φVtxG=V
1hevtxdg0.a φAX
1hevtxdg0.d φDV
1hevtxdg1.e φE𝒫V
1hevtxdg1.n φDE
1hevtxdg1.l φ2E
Assertion 1hevtxdg1 φVtxDegGD=1

Proof

Step Hyp Ref Expression
1 1hevtxdg0.i φiEdgG=AE
2 1hevtxdg0.v φVtxG=V
3 1hevtxdg0.a φAX
4 1hevtxdg0.d φDV
5 1hevtxdg1.e φE𝒫V
6 1hevtxdg1.n φDE
7 1hevtxdg1.l φ2E
8 1 dmeqd φdomiEdgG=domAE
9 dmsnopg E𝒫VdomAE=A
10 5 9 syl φdomAE=A
11 8 10 eqtrd φdomiEdgG=A
12 fveq2 x=Ex=E
13 12 breq2d x=E2x2E
14 2 pweqd φ𝒫VtxG=𝒫V
15 5 14 eleqtrrd φE𝒫VtxG
16 13 15 7 elrabd φEx𝒫VtxG|2x
17 3 16 fsnd φAE:Ax𝒫VtxG|2x
18 17 adantr φdomiEdgG=AAE:Ax𝒫VtxG|2x
19 1 adantr φdomiEdgG=AiEdgG=AE
20 simpr φdomiEdgG=AdomiEdgG=A
21 19 20 feq12d φdomiEdgG=AiEdgG:domiEdgGx𝒫VtxG|2xAE:Ax𝒫VtxG|2x
22 18 21 mpbird φdomiEdgG=AiEdgG:domiEdgGx𝒫VtxG|2x
23 4 2 eleqtrrd φDVtxG
24 23 adantr φdomiEdgG=ADVtxG
25 eqid VtxG=VtxG
26 eqid iEdgG=iEdgG
27 eqid domiEdgG=domiEdgG
28 eqid VtxDegG=VtxDegG
29 25 26 27 28 vtxdlfgrval iEdgG:domiEdgGx𝒫VtxG|2xDVtxGVtxDegGD=xdomiEdgG|DiEdgGx
30 22 24 29 syl2anc φdomiEdgG=AVtxDegGD=xdomiEdgG|DiEdgGx
31 rabeq domiEdgG=AxdomiEdgG|DiEdgGx=xA|DiEdgGx
32 31 adantl φdomiEdgG=AxdomiEdgG|DiEdgGx=xA|DiEdgGx
33 32 fveq2d φdomiEdgG=AxdomiEdgG|DiEdgGx=xA|DiEdgGx
34 fveq2 x=AiEdgGx=iEdgGA
35 34 eleq2d x=ADiEdgGxDiEdgGA
36 35 rabsnif xA|DiEdgGx=ifDiEdgGAA
37 1 fveq1d φiEdgGA=AEA
38 fvsng AXE𝒫VAEA=E
39 3 5 38 syl2anc φAEA=E
40 37 39 eqtrd φiEdgGA=E
41 6 40 eleqtrrd φDiEdgGA
42 41 iftrued φifDiEdgGAA=A
43 36 42 eqtrid φxA|DiEdgGx=A
44 43 fveq2d φxA|DiEdgGx=A
45 hashsng AXA=1
46 3 45 syl φA=1
47 44 46 eqtrd φxA|DiEdgGx=1
48 47 adantr φdomiEdgG=AxA|DiEdgGx=1
49 30 33 48 3eqtrd φdomiEdgG=AVtxDegGD=1
50 11 49 mpdan φVtxDegGD=1