Description: The vertex degree of vertex D in a graph G with only one hyperedge E (not being a loop) is 1 if D is incident with the edge E . (Contributed by AV, 2-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1hevtxdg0.i | |
|
1hevtxdg0.v | |
||
1hevtxdg0.a | |
||
1hevtxdg0.d | |
||
1hevtxdg1.e | |
||
1hevtxdg1.n | |
||
1hevtxdg1.l | |
||
Assertion | 1hevtxdg1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hevtxdg0.i | |
|
2 | 1hevtxdg0.v | |
|
3 | 1hevtxdg0.a | |
|
4 | 1hevtxdg0.d | |
|
5 | 1hevtxdg1.e | |
|
6 | 1hevtxdg1.n | |
|
7 | 1hevtxdg1.l | |
|
8 | 1 | dmeqd | |
9 | dmsnopg | |
|
10 | 5 9 | syl | |
11 | 8 10 | eqtrd | |
12 | fveq2 | |
|
13 | 12 | breq2d | |
14 | 2 | pweqd | |
15 | 5 14 | eleqtrrd | |
16 | 13 15 7 | elrabd | |
17 | 3 16 | fsnd | |
18 | 17 | adantr | |
19 | 1 | adantr | |
20 | simpr | |
|
21 | 19 20 | feq12d | |
22 | 18 21 | mpbird | |
23 | 4 2 | eleqtrrd | |
24 | 23 | adantr | |
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 25 26 27 28 | vtxdlfgrval | |
30 | 22 24 29 | syl2anc | |
31 | rabeq | |
|
32 | 31 | adantl | |
33 | 32 | fveq2d | |
34 | fveq2 | |
|
35 | 34 | eleq2d | |
36 | 35 | rabsnif | |
37 | 1 | fveq1d | |
38 | fvsng | |
|
39 | 3 5 38 | syl2anc | |
40 | 37 39 | eqtrd | |
41 | 6 40 | eleqtrrd | |
42 | 41 | iftrued | |
43 | 36 42 | eqtrid | |
44 | 43 | fveq2d | |
45 | hashsng | |
|
46 | 3 45 | syl | |
47 | 44 46 | eqtrd | |
48 | 47 | adantr | |
49 | 30 33 48 | 3eqtrd | |
50 | 11 49 | mpdan | |