Metamath Proof Explorer


Theorem rabsnif

Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypothesis rabsnif.f x=Aφψ
Assertion rabsnif xA|φ=ifψA

Proof

Step Hyp Ref Expression
1 rabsnif.f x=Aφψ
2 rabsnifsb xA|φ=if[˙A/x]˙φA
3 1 sbcieg AV[˙A/x]˙φψ
4 3 ifbid AVif[˙A/x]˙φA=ifψA
5 2 4 eqtrid AVxA|φ=ifψA
6 rab0 x|φ=
7 ifid ifψ=
8 6 7 eqtr4i x|φ=ifψ
9 snprc ¬AVA=
10 9 biimpi ¬AVA=
11 10 rabeqdv ¬AVxA|φ=x|φ
12 10 ifeq1d ¬AVifψA=ifψ
13 8 11 12 3eqtr4a ¬AVxA|φ=ifψA
14 5 13 pm2.61i xA|φ=ifψA