Metamath Proof Explorer


Theorem rabrsn

Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Assertion rabrsn M = x A | φ M = M = A

Proof

Step Hyp Ref Expression
1 rabsnifsb x A | φ = if [˙A / x]˙ φ A
2 1 eqeq2i M = x A | φ M = if [˙A / x]˙ φ A
3 ifeqor if [˙A / x]˙ φ A = A if [˙A / x]˙ φ A =
4 orcom if [˙A / x]˙ φ A = A if [˙A / x]˙ φ A = if [˙A / x]˙ φ A = if [˙A / x]˙ φ A = A
5 3 4 mpbi if [˙A / x]˙ φ A = if [˙A / x]˙ φ A = A
6 eqeq1 M = if [˙A / x]˙ φ A M = if [˙A / x]˙ φ A =
7 eqeq1 M = if [˙A / x]˙ φ A M = A if [˙A / x]˙ φ A = A
8 6 7 orbi12d M = if [˙A / x]˙ φ A M = M = A if [˙A / x]˙ φ A = if [˙A / x]˙ φ A = A
9 5 8 mpbiri M = if [˙A / x]˙ φ A M = M = A
10 2 9 sylbi M = x A | φ M = M = A