| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabsnifsb |  |-  { x e. { A } | ph } = if ( [. A / x ]. ph , { A } , (/) ) | 
						
							| 2 | 1 | eqeq2i |  |-  ( M = { x e. { A } | ph } <-> M = if ( [. A / x ]. ph , { A } , (/) ) ) | 
						
							| 3 |  | ifeqor |  |-  ( if ( [. A / x ]. ph , { A } , (/) ) = { A } \/ if ( [. A / x ]. ph , { A } , (/) ) = (/) ) | 
						
							| 4 |  | orcom |  |-  ( ( if ( [. A / x ]. ph , { A } , (/) ) = { A } \/ if ( [. A / x ]. ph , { A } , (/) ) = (/) ) <-> ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) | 
						
							| 5 | 3 4 | mpbi |  |-  ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) | 
						
							| 6 |  | eqeq1 |  |-  ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = (/) <-> if ( [. A / x ]. ph , { A } , (/) ) = (/) ) ) | 
						
							| 7 |  | eqeq1 |  |-  ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = { A } <-> if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) | 
						
							| 8 | 6 7 | orbi12d |  |-  ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( ( M = (/) \/ M = { A } ) <-> ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) ) | 
						
							| 9 | 5 8 | mpbiri |  |-  ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = (/) \/ M = { A } ) ) | 
						
							| 10 | 2 9 | sylbi |  |-  ( M = { x e. { A } | ph } -> ( M = (/) \/ M = { A } ) ) |