Metamath Proof Explorer


Theorem paddunssN

Description: Projective subspace sum includes the set union of its arguments. (Contributed by NM, 12-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion paddunssN KBXAYAXYX+˙Y

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 ssun1 XYXYpA|qXrYpKqjoinKr
4 eqid K=K
5 eqid joinK=joinK
6 4 5 1 2 paddval KBXAYAX+˙Y=XYpA|qXrYpKqjoinKr
7 3 6 sseqtrrid KBXAYAXYX+˙Y