Metamath Proof Explorer


Theorem pcl0N

Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypothesis pcl0.c U=PClK
Assertion pcl0N KHLU=

Proof

Step Hyp Ref Expression
1 pcl0.c U=PClK
2 0ss AtomsK
3 eqid AtomsK=AtomsK
4 eqid 𝑃K=𝑃K
5 3 4 1 pclss2polN KHLAtomsKU𝑃K𝑃K
6 2 5 mpan2 KHLU𝑃K𝑃K
7 4 2pol0N KHL𝑃K𝑃K=
8 6 7 sseqtrd KHLU
9 ss0 UU=
10 8 9 syl KHLU=