Metamath Proof Explorer


Theorem pcl0N

Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypothesis pcl0.c
|- U = ( PCl ` K )
Assertion pcl0N
|- ( K e. HL -> ( U ` (/) ) = (/) )

Proof

Step Hyp Ref Expression
1 pcl0.c
 |-  U = ( PCl ` K )
2 0ss
 |-  (/) C_ ( Atoms ` K )
3 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
4 eqid
 |-  ( _|_P ` K ) = ( _|_P ` K )
5 3 4 1 pclss2polN
 |-  ( ( K e. HL /\ (/) C_ ( Atoms ` K ) ) -> ( U ` (/) ) C_ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` (/) ) ) )
6 2 5 mpan2
 |-  ( K e. HL -> ( U ` (/) ) C_ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` (/) ) ) )
7 4 2pol0N
 |-  ( K e. HL -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` (/) ) ) = (/) )
8 6 7 sseqtrd
 |-  ( K e. HL -> ( U ` (/) ) C_ (/) )
9 ss0
 |-  ( ( U ` (/) ) C_ (/) -> ( U ` (/) ) = (/) )
10 8 9 syl
 |-  ( K e. HL -> ( U ` (/) ) = (/) )