| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcl0b.a |
|- A = ( Atoms ` K ) |
| 2 |
|
pcl0b.c |
|- U = ( PCl ` K ) |
| 3 |
1 2
|
pclssidN |
|- ( ( K e. HL /\ P C_ A ) -> P C_ ( U ` P ) ) |
| 4 |
|
eqimss |
|- ( ( U ` P ) = (/) -> ( U ` P ) C_ (/) ) |
| 5 |
3 4
|
sylan9ss |
|- ( ( ( K e. HL /\ P C_ A ) /\ ( U ` P ) = (/) ) -> P C_ (/) ) |
| 6 |
|
ss0 |
|- ( P C_ (/) -> P = (/) ) |
| 7 |
5 6
|
syl |
|- ( ( ( K e. HL /\ P C_ A ) /\ ( U ` P ) = (/) ) -> P = (/) ) |
| 8 |
|
fveq2 |
|- ( P = (/) -> ( U ` P ) = ( U ` (/) ) ) |
| 9 |
2
|
pcl0N |
|- ( K e. HL -> ( U ` (/) ) = (/) ) |
| 10 |
8 9
|
sylan9eqr |
|- ( ( K e. HL /\ P = (/) ) -> ( U ` P ) = (/) ) |
| 11 |
10
|
adantlr |
|- ( ( ( K e. HL /\ P C_ A ) /\ P = (/) ) -> ( U ` P ) = (/) ) |
| 12 |
7 11
|
impbida |
|- ( ( K e. HL /\ P C_ A ) -> ( ( U ` P ) = (/) <-> P = (/) ) ) |