Metamath Proof Explorer


Theorem pcl0bN

Description: The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pcl0b.a 𝐴 = ( Atoms ‘ 𝐾 )
pcl0b.c 𝑈 = ( PCl ‘ 𝐾 )
Assertion pcl0bN ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( ( 𝑈𝑃 ) = ∅ ↔ 𝑃 = ∅ ) )

Proof

Step Hyp Ref Expression
1 pcl0b.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pcl0b.c 𝑈 = ( PCl ‘ 𝐾 )
3 1 2 pclssidN ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → 𝑃 ⊆ ( 𝑈𝑃 ) )
4 eqimss ( ( 𝑈𝑃 ) = ∅ → ( 𝑈𝑃 ) ⊆ ∅ )
5 3 4 sylan9ss ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ ( 𝑈𝑃 ) = ∅ ) → 𝑃 ⊆ ∅ )
6 ss0 ( 𝑃 ⊆ ∅ → 𝑃 = ∅ )
7 5 6 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ ( 𝑈𝑃 ) = ∅ ) → 𝑃 = ∅ )
8 fveq2 ( 𝑃 = ∅ → ( 𝑈𝑃 ) = ( 𝑈 ‘ ∅ ) )
9 2 pcl0N ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) = ∅ )
10 8 9 sylan9eqr ( ( 𝐾 ∈ HL ∧ 𝑃 = ∅ ) → ( 𝑈𝑃 ) = ∅ )
11 10 adantlr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ 𝑃 = ∅ ) → ( 𝑈𝑃 ) = ∅ )
12 7 11 impbida ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( ( 𝑈𝑃 ) = ∅ ↔ 𝑃 = ∅ ) )