Metamath Proof Explorer


Theorem pcofval

Description: The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 7-Jun-2014) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Assertion pcofval * 𝑝 J = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1

Proof

Step Hyp Ref Expression
1 oveq2 j = J II Cn j = II Cn J
2 eqidd j = J x 0 1 if x 1 2 f 2 x g 2 x 1 = x 0 1 if x 1 2 f 2 x g 2 x 1
3 1 1 2 mpoeq123dv j = J f II Cn j , g II Cn j x 0 1 if x 1 2 f 2 x g 2 x 1 = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1
4 df-pco * 𝑝 = j Top f II Cn j , g II Cn j x 0 1 if x 1 2 f 2 x g 2 x 1
5 ovex II Cn J V
6 5 5 mpoex f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1 V
7 3 4 6 fvmpt J Top * 𝑝 J = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1
8 4 fvmptndm ¬ J Top * 𝑝 J =
9 cntop2 f II Cn J J Top
10 9 con3i ¬ J Top ¬ f II Cn J
11 10 eq0rdv ¬ J Top II Cn J =
12 11 olcd ¬ J Top II Cn J = II Cn J =
13 0mpo0 II Cn J = II Cn J = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1 =
14 12 13 syl ¬ J Top f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1 =
15 8 14 eqtr4d ¬ J Top * 𝑝 J = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1
16 7 15 pm2.61i * 𝑝 J = f II Cn J , g II Cn J x 0 1 if x 1 2 f 2 x g 2 x 1